An evaluation of quantum neural networks in the detection of epileptic seizures in the neonatal electroencephalogram

نویسندگان

  • Nicolaos B. Karayiannis
  • Amit Mukherjee
  • John R. Glover
  • James D. Frost
  • Richard A. Hrachovy
  • Eli M. Mizrahi
چکیده

This paper presents the results of an experimental study that evaluated the ability of quantum neural networks (QNNs) to capture and quantify uncertainty in data and compared their performance with that of conventional feedforward neural networks (FFNNs). In this work, QNNs and FFNNs were trained to classify short segments of epileptic seizures in neonatal EEG. The experiments revealed significant differences between the internal representations created by trained QNNs and FFNNs from sample information provided by the training data. The results of this experimental study also confirmed that the responses of trained QNNs are more reliable indicators of uncertainty in the input data compared with the responses of trained FFNNs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alterations of the electroencephalogram sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy

Introduction: Temporal lobe epilepsy (TLE) is the most common and drug resistant epilepsy in adults. Due to behavioral, morphologic and electrographic similarities, pilocarpine model of epilepsy best resembles TLE. This study was aimed at determination of the changes in electroencephalogram (EEG) sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy. Analysis of thes...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Detection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals

Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...

متن کامل

Deep Recurrent Neural Networks for seizure detection and early seizure detection systems

Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term el...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2006